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Abstract— We consider the problem of steering the aggrega-
tive behavior of a set of noncooperative price-taking agents
to a desired point. Different from prevalent pricing schemes
where the price is available for design, we resort to suitable
“nudge” mechanisms to influence the behavior of the agents.
In particular, a regulator sends a price prediction signal
to the agents, based on which the agents decide on their
actions. This prediction is potentially different from the actual
price, which brings the issue of reliability. We take this into
account by associating trust variables to the agents, implying
that the agents do not blindly follow the prediction signal.
These trust variables are updated depending on the history
of the discrepancy between the actual and the predicted price.
We carefully examine the resulting multi-components model
and analyse its convergence properties. We show that under
the proposed nudge mechanisms, the regulator gains agents’
trust fully, and the aggregative behavior provably converges
to a desired set point. The effectiveness of the approach is
demonstrated by numerical examples.

I. INTRODUCTION

Nudge is a concept in behavioral science and economics,
which is defined as any characteristic of the choice struc-
ture that predictably changes people’s behavior, without
restricting any options or exceptionally affecting economic
incentives1. Consequently, nudges are not regulations, but
they are easy and cheap to avoid [1]. Due to their aspects of
preserving freedom of choice and being non-intrusive, nudge
policies have become popular over the last few years. The
most notable example is the “Behavioural Insights Team”
(known as the “Nudge Unit”) that applies nudge theory
in British government, and, for instance, its most recent
report concerns online behavior, harm, and manipulation
[2]. Another example is informational nudging, defined as
sending manipulated, and possibly misleading, information
about options to a decision maker for altering its choices
[3]. Informational nudging is studied in the context of
transportation systems [4] and boundedly rational decision
makers [5].

Motivated by practical applications, such as charging of
plug-in electrical vehicles in a coordinated way [7] or de-
mand side management in smart grids [8], there exist various
works on altering the aggregative behavior of a population
of price-taking agents. A common approach in the literature
is to design the price signal. If the regulator has access to all
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prize winner, Richard Thaler, presented another definition in [1], which is
more popular and is used here.

information of the agents, as shown in [9], a linear price with
respect to the actions of the agents is sufficient to achieve
a desired behavior. Since this information is not available
to the regulator in practice, dynamic pricing algorithms are
proposed in [9]–[11]. Although treating price as a control
signal facilitates the steering of aggregative behavior, the
validity of such assumption can be limited since the actual
price is often affected by various factors including fixed and
variable production costs and daily market conditions; see
e.g. [12] in the context of power systems.

Taking into account these considerations, in this
manuscript, we propose nudge mechanisms through which
the regulator alters aggregative behavior of price-taking
agents, without directly designing the price and without
fully knowing the cost/utility functions of the agents. In our
setup, the regulator sends a prediction of the price to all the
agents. The agents take this prediction into account when
deciding their actions, but do not blindly follow it since
they are aware that the prediction signal might be different
than the actual price that they will incur. To model such
behavior, we associate a trust variable to each agent, which
increases/decreases depending on the history of the accuracy
of the communicated price prediction.

Different to informational nudging in [3]–[5], we explicitly
take the issue of reliability into account by incorporating
trust dynamics in our design. In other words, here the agents
cross-check the validity of the communicated information.
Moreover, the trust dynamics couple the price prediction
dynamics to the actual price, and consequently the proposed
nudge mechanisms do not simplify to conventional dynamic
pricing schemes.

Contributions: We present a framework which is able to
capture the multi-components model resulting from nudge
mechanisms in conjunction with agents’ actions and trust
dynamics. Within this framework, we design two nudge
mechanisms for the regulator, termed hard and soft nudge.
We show that under these mechanisms, full trust of agents
is gained in finite time and the aggregative behavior of
the agents converges asymptotically to a desired set point.
Finally, a numerical study illustrates our results. The proofs
are omitted for space reasons and will appear in [13].

The rest of the paper is organized as follows. Section II
provides preliminaries. The framework is introduced in Sec-
tion III. Section IV presents the proposed nudge mechanisms
with convergence analysis. Simulation results are included in
Section V, and Section VI gathers our conclusions.



II. PRELIMINARIES

This short section presents notation and basic concepts on
convex analysis and projected dynamical systems.

A. Notation

We denote the set of real and nonnegative real numbers
by R and R≥0, respectively. The standard Euclidean norm
is denoted by ‖ · ‖. The symbol 1n denotes the vector of
all ones in Rn. Given the vectors x1, · · · , xN ∈ Rn, we use
the shorthand notation col(xi) =

[
x>1 , · · · , x>N

]>
. We write

A � 0 to indicate that A = A> ∈ Rn×n is positive definite.
We denote the closure of a set X ⊆ Rn by cl(X ). For a given
vector x ∈ Rn and a positive definite matrix A, we define
‖x‖2A := x>Ax. A closed ball with center x ∈ Rn and radius
r > 0 is denoted by B̄(x, r) := {y ∈ Rn | ‖x − y‖ ≤ r}.
A function F : X → Rm is locally Lipschitz on an open
set X ⊂ Rn if for any point x ∈ X , there exist positive
scalar r and Lipschitz constant L, both dependent on x, such
that ‖F (y′) − F (y)‖ ≤ L‖y′ − y‖ for all y′, y ∈ B̄(x, r).
The function F is Lipschitz on X if there exists a positive
constant L satisfying ‖F (y′) − F (y)‖ ≤ L‖y′ − y‖ for all
y′, y ∈ X .

B. Convex analysis

Consider a nonempty, closed, convex set X ⊆ Rn. The
map projX : Rn → X denotes the Euclidean projection
on to the set X , i.e., projX (z) := arg miny∈X ‖y− z‖. The
normal cone to X at a given point x ∈ X is the setNX (x) :={
y ∈ Rn | y>(s − x) ≤ 0,∀s ∈ X

}
, and the tangent cone

is defined as the set TX (x) := cl (∪y∈X ∪λ>0 λ(y − x)).
The projection of a vector z ∈ Rn on to TX (x) is denoted
by ΠX (x, z) := projTX (x)(z). Given any point x ∈ X , it
follows from Moreau’s decomposition theorem [14, Thm.
3.2.5] that any vector z ∈ Rn can be written as z =
projNX (x)(z) + projTX (x)(z).

C. Projected dynamical systems

Given a nonempty closed set X ⊂ Rn and a continuous
function h : Rn × [0,∞) → Rn, the nonautonomous
projected dynamical system associated to them is

ẋ = ΠX (x, h(x, t)) . (1)

The right-hand side of this system is in general discontinuous
on the boundary of the set X . Following [15, Def. 2.5], we
specify a notion of solution to the above projected dynamical
system. A map x : [0,∞) → X is a Carathéodory solution
of the projected dynamical system (1) if it is absolutely
continuous and satisfies ẋ(t) = ΠX (x(t), h(x(t), t)) for
almost all t ∈ [0,∞).

III. PROBLEM FORMULATION AND THE MODEL

We consider a set of agents I := {1, . . . , N} that interact
repeatedly with a central regulator. Each agent is associated
with a cost function Ji that it wishes to minimize by choosing

its action. In particular, the cost function of each agent i ∈ I
is given by

Ji (xi, p) :=
1

2
(xi − ci)>Qi (xi − ci) + xi

>p , (2)

where xi ∈ Rn is the action of agent i, p ∈ Rn is the price,
Qi = Q>i ∈ Rn×n, Qi � 0, and ci ∈ Rn. This structure
appears in applications, such as charging coordination of
plug-in electrical vehicles, where xi indicates the demand
of a product that comes at price p [7], [8].

Before providing further details, we give an overview of
our model. The regulator provides a prediction of the price
for all the agents. This prediction is potentially different from
the actual price, which is treated as an exogenous signal
and is not available for design. The agents use the price
prediction to choose their action with the aim of minimizing
their cost (negative of their utility) and the expected costs
that they might incur under the actual price. The actual price
is determined and revealed only after the actions are chosen.

The regulator, on the other hand, aims at steering the
aggregative behavior of the agents to a desired point using
the price prediction signal. We assume that the regulator
does not know the cost functions of the agents. A common
approach of steering aggregate behavior, often referred to
as dynamic pricing, is to use the price as a control signal
to regulate the system of agents [9]–[11]. In contrast, here
the actual price signal is not available for design and the
regulator needs to rely on the price prediction signal to
manipulate the agents’ behavior. Our motivation stems from
the fact that, in reality, the actual price may not be prescribed
a priori as a (dynamic) function of demands/actions.

Decoupling the price prediction from the actual one readily
brings the issue of trust or reliability. We take this into
account by considering that the agents associate a level of
trust/reliability to the regulator’s prediction based on the
history of its accuracy.

Next, we aim to carefully model the above described fea-
tures and design update schemes, termed nudge mechanisms,
for the predicted price provided by the regulator that success-
fully allow steering of the aggregative behavior. We first look
at the problem from agents’ perspective and put forward a
model where agents use available information to decide on
their actions. The regulator side is considered afterwards,
where nudge mechanisms are proposed to manipulate the
aggregative behavior of the agents. We study the convergence
properties of the system formed by the interconnection of
agents and regulator side updates.

A. Agents’ actions and trust dynamics

In choosing their actions at time t ∈ [0,∞), the agents
have access to a price prediction p̂(t) ∈ Rn sent out by
the regulator. Note that this value is common for all agents.
In addition, we assume that each agent i ∈ I has a local
perception of the price, denoted by λ̂i ∈ Rn, that it would
have used in the absence of the prediction p̂(t).

As mentioned before, different from conventional dynamic
pricing, the distinction between the actual price and its



prediction brings the issue of reliability, and we incorporate
this in our model by associating a level of trust/reliability to
the regulator’s prediction based on the history of its accuracy.
In particular, let γi(t) ∈ [0, 1] be the trust variable of agent i
associated with the price prediction p̂(t). Note that γi(t) = 1
and γi(t) = 0 stand for full and no trust, respectively. Given
the amount of trust, predicted price, and the local perception,
agent i adopts a trust-adapted price perception

λi(t) := γi(t)p̂(t) + (1− γi(t)) λ̂i . (3)

Note that if γi(t) is close to 1, the agent disregards its
own perception of the price and follows the price predic-
tion communicated by the regulator. Conversely, as γi(t)
approaches 0, the agent loses trust in the price prediction
p̂(t) and discards it when deciding on its action. The agent
i uses this trust-adapted price perception to determine its
action as follows:

xi(t) := arg min
x∈Rn

Ji (x, λi(t)) .

By using (2) and (3), the explicit expression of the action of
agent i is given by

xi(t) = ci −Q−1
i

(
γi(t)p̂(t) + (1− γi(t)) λ̂i

)
. (4)

The actual price t 7→ p(t) is available to the agents once
they have taken their actions. If the discrepancy between the
predicted and actual price is large, then agents lose their trust
in the predictions. We capture the changes of trust based on
experiences by providing a trust update rule. In particular,
we consider the following trust dynamics:

γ̇i(t) = ηiψi(‖p(t)− p̂(t)‖) (5)

where ηi > 0 and ψi : R≥0 → [−1, 1] determines whether
the agent looses or gains trust in the price prediction. We
assume that ψi( · ) satisfies the following assumption.

Assumption III.1. The function ψi : R≥0 → [−1, 1] is
locally Lipschitz and strictly decreasing. In addition, we have
ψi(0) = 1 and ψi(δi) = 0 for some δi > 0. •

The scalar δi quantifies the tolerance of agent i towards
the prediction error. That is, if the error between the actual
and the predicted price ‖p(t) − p̂(t)‖ is greater than δi,
agent i begins loosing trust in the prediction with the rate
ηi. Conversely, trust increases as long as the error is within
the tolerance δi. The rationale behind this dynamics is that,
excluding the extreme cases of unconditional trust or distrust,
trust can be gained or lost after several positive or negative
experiences [16].

Note that trust variables are defined in the interval between
0 and 1. To respect this, we slightly revise (5) by adding the
projection operator to it, namely:

γ̇i(t) = Π[0,1] (γi(t), ηiψi(‖p(t)− p̂(t)‖)) . (6)

We note that the essence of the trust update rule remains the
same as (5). The projection operator becomes active only
if the bounds γi = 0 or γi = 1 are hit. In particular, if

γi(t1) = 1 at some time t = t1 and ψi(‖p(t1) − p̂(t1)‖) is
positive (thus suggesting an increase in γi), the projection
becomes active, and γ̇i(t1) is set to 0, thus prohibiting the
trust variable to exceed its maximum value 1. An analogous
scenario occurs for the case γi(t1) = 0.

B. Desired aggregative behavior

The goal of the system regulator is to coordinate the agents
such that they cumulatively behave in a desired fashion.
Here, we are interested in regulating

∑
i∈I xi(t), which we

refer to as aggregative behavior. Such quantity often reflects
total production or total demand depending on the application
at hand. More precisely, the regulator aims to achieve

lim
t→∞

∑
i∈I

xi(t) = x∗ , (7)

for some desired setpoint x∗ ∈ Rn. To this end, we
propose nudge mechanisms that can be implemented by the
regulator. A mechanism is called a nudge if it influences the
behavior of a group of individuals through providing indirect
suggestions. We use this concept and propose mechanisms in
which the system regulator manipulates the price prediction
p̂(t) to achieve its goal, namely (7).

Recall that the actual price is considered here as an
exogenous signal. In particular, we assume that it admits
the form

p(t) = p0 + ∆p(t)

for all t ∈ [0,∞), where p0 ∈ Rn is a constant base price,
known to the regulator, and ‖∆p(t)‖ � ‖p0‖ accounts for
price fluctuation. We make the following assumption that
holds throughout the paper.

Assumption III.2. The actual price function p : [0,∞) →
Rn is continuous, and its fluctuation satisfies ‖∆p(t)‖ <
mini∈I δi for all t ∈ [0,∞). •

Remark III.3. Note that without the objective (7), the
best the regulator can do is to provide the agents with the
true value of p0. In that case, the price prediction error
amounts to ‖∆p(t)‖. Therefore, the inequality constraint in
Assumption III.2 simply means that the prediction error in
such a (manipulation-free) case is within the error tolerances
of all agents. •

The fact that the agents do not blindly follow p̂(t) implies
that not any arbitrary aggregative behavior x∗ is achievable.
Next, we identify a set of aggregative behavior that our nudge
mechanisms can successfully drive the agents to.

Consider Assumption III.2, and let δ̄ ∈ R be chosen such
that

0 < δ̄ < min
i∈I

δi − ‖∆p(t)‖ , ∀ t ∈ [0,∞) . (8)

Then, if p̂(t) belongs to the closed ball B̄(p0, δ̄), we get from
the trust dynamics (6) that γi(t) increases for all i ∈ I. As a
result, the regulator can gain trust of the agents on the price
prediction by constraining p̂(t) to the ball B̄(p0, δ̄). Bearing
this and the action of agents in (4) in mind, we define the



set of admissible x∗ as:

X ∗ :=

{
x ∈ Rn | x =

∑
i∈I

(
ci −Q−1

i p̂
)
,∀p̂ ∈ B̄(p0, δ̄)

}
.

(9)
From (9), one can equivalently write

X ∗ =

{
x ∈ Rn | (x− x0)>(

∑
i∈I

Q−1
i )−2(x− x0) ≤ δ̄ 2

}
,

where x0 :=
∑
i∈I
(
ci −Q−1

i p0

)
. Thus, the regulator can

alter the aggregative behavior inside a compact set around
x0, where the set depends on δ̄ and Qi.

In other terms, X ∗ characterizes the set of aggregative
behaviors that are potentially achievable while monotonically
increasing the trust variables. Note from (8) that bigger the
agents’ error tolerances δis, the larger can be δ̄ and thus X ∗.

For any x∗ ∈ X ∗, there exists a unique p∗ ∈ B̄(p0, δ̄)
such that

x∗ =
∑
i∈I

(
ci −Q−1

i p∗
)
, (10)

or equivalently

p∗ =
(∑
i∈I

Q−1
i

)−1(− x∗ +
∑
i∈I

ci
)
. (11)

The vector p∗ is an important quantity. If the agents fully
trust the price prediction and the regulator communicates
p∗ as the prediction, then the aggregative behavior of the
agents will be x∗. However, the regulator cannot directly
compute p∗ since it does not know the exact parameters
defining individual cost functions. Moreover, trust can only
be gained over time. To address these issues, we propose
nudge mechanisms in the next section that can drive the price
prediction p̂(t) to p∗ at steady-state.

IV. REGULATOR’S NUDGE MECHANISMS

In this section, we present two nudge mechanisms to steer
the aggregative behavior of the agents to the desired point.

A. Hard nudge mechanism

We propose the following update law

˙̂p(t) = ΠB̄(p0,δ̄)

(
p̂(t),

∑
i∈I

xi(t)− x∗
)
, (12)

where δ̄ satisfies (8) and x∗ is the desired aggregative
behavior. The nudge mechanism in (12) updates the price
predictions such that the error between the desired behavior
and the current aggregative behavior diminishes. The pro-
jection constrains the predictions to the ball B̄(p0, δ̄) for all
t ∈ [0,∞), thus we refer to (12) as hard nudge.

The overall system is obtained by interconnecting the
proposed nudge mechanism (12) with agents’ actions (4)
and trust dynamics (6). The theorem below addresses con-
vergence of the overall system.

Theorem IV.1. Consider the agents’ actions in (4) based
on trust dynamics (6), and nudge mechanism (12) with x∗ ∈
X ∗. Then, any solution t 7→ (p̂(t), col(γi(t))), initialized

as (p̂(0), col(γi(0))) ∈ B̄(p0, δ̄) × [0, 1]N , converges to
(p∗,1N ) with p∗ given by (11). Consequently,

∑
i∈I xi(t)

converges to x∗ as desired.

Remark IV.2. In case x∗ /∈ X ∗, it can be shown that
the convergence of aggregative behavior is still guaranteed,
but to a point which is different from x∗. In particular, the
aggregative behavior converges to x′ 6= x∗ given by

x′ = arg min
y∈X∗

1

2
‖x∗ − y‖2

(
∑

i∈I Q
−1
i )
−1 .

A detailed investigation of such a case is postponed to an
extended version of this work. •

B. Soft nudge mechanism

While using the nudge mechanism in (12) is effective
for driving the aggregative behavior of the agents to the
desired point, convergence is guaranteed only if the price
prediction is initialized in the set B̄(p0, δ̄). Now, we modify
the nudge mechanism such that convergence is guaranteed
for all p̂(0) ∈ Rn. The modified mechanism is given as

˙̂p(t) =
∑
i∈I

xi(t)−x∗+
1

ε

(
projB̄(p0,δ̄) (p̂(t))− p̂(t)

)
, (13)

where ε > 0 is a design parameter. The term
∑
i∈I xi − x∗

provides a suitable integral action as before to steer the
aggregative behavior towards x∗. Note that, different from
(12), this term is outside the projection operator. Therefore,
the dynamics in (13) allows p̂ to leave the set B̄(p0, δ̄),
and we emphasize this by referring to (13) as soft nudge.
Outside the set B̄(p0, δ̄), the term projB̄(p0,δ̄) (p̂) − p̂ is
nonzero with the penalty gain ε−1, thus attracting the price
prediction p̂ to the set and preventing the loss of trust.
The parameter ε is chosen sufficiently small such that trust
variables monotonically increase and reach the value of 1 in
finite time. Below we establish the convergence properties
of the above soft nudge mechanism.

Theorem IV.3. Consider the agents’ actions in (4) based
on trust dynamics (6), and nudge mechanism (13) with x∗ ∈
X ∗. Then, there exists some ε∗ > 0 such that for all 0 <
ε ≤ ε∗, any solution t 7→ (p̂(t), col(γi(t))), initialized as
(p̂(0), col(γi(0))) ∈ Rn×[0, 1]N , converges to (p∗,1N ) with
p∗ given by (11). Consequently,

∑
i∈I xi(t) converges to x∗

as desired.

Remark IV.4. While Theorem IV.3 guarantees existence
of a sufficiently small ε∗, computing its value requires the
knowledge of bounds on agent parameters ci, Qi, δi, and λ̂i.
If such bounds are not available, then one can opt for the
hard nudge mechanism in (12) at the cost of restricting the
initial condition p̂(0) to the ball B̄(p0, δ̄). •

One practical issue in the presented framework could
be robustness guarantees for the nudge mechanism. This
requirement raises as (4) may not fully represent action
selection process of the agents. As an example, the agents
might be partially rational, rather than fully rational, in



choosing their optimal actions [17]. Although such robust-
ness investigation is not carried out in this work, the soft
nudge mechanism (13) prepares the ground for such a study.

V. SIMULATIONS

This section presents numerical results to validate perfor-
mance of the proposed model and nudge mechanisms. We
consider N = 3 agents with objective function (2) and

Q1 =

[
3 2
2 4

]
, Q2 =

[
2 1
1 5

]
, Q3 =

[
4 3
3 4

]
,

c1 =
[
5 8

]>
, c2 =

[
6 3

]>
, c3 =

[
7 6

]>
.

The local perceptions of the price are chosen as

λ̂1 =
[
25 15

]>
, λ̂2 =

[
10 15

]>
, λ̂3 =

[
17 23

]>
.

The trust variable of each agent is obtained from (6) with
η1 = 0.3, η2 = 0.2, and η3 = 0.25. In addition, we use the
following function which satisfies Assumption III.1,

ψi(‖p− p̂‖) = 2 sech(ln(a)‖p− p̂‖/δi)− 1 ,

with a = (2 +
√

3), δ1 = 3, δ2 = 4, and δ3 = 3. Note that
ψi(·) is between −1 and 1, and ψi(δi) = 2 sech(ln(a))−1 =
0 as desired. As the agents may not trust the price prediction
at the beginning, we set γ1(0) = 0.2, γ2(0) = 0.1, and
γ3(0) = 0.

For the price signal, we set p0 =
[
15 20

]>
and consider

∆p(t) to be a random signal with ‖∆p(t)‖ ≤ 1 for all t ∈
[0,∞). We first provide simulation results when the regulator
uses the hard nudge (12) with δ̄ = 1.7 and p̂(0) = p0 to steer
the aggregative behavior to x∗ =

[
10 6

]>
.

To present the results, we denote the j-th elements of price
prediction p̂ and action xi by p̂(j) and xi (j), respectively. The
price prediction and trust variables of the agents shown in
Fig. 1 and Fig. 2 illustrate the resulting aggregative behavior.
As expected, full trust of the agents is achieved and the
aggregative behavior of the gents converges to the desired
point. Fig. 3 demonstrates the relation between B̄(p0, δ̄) and
the largest feasible set B(p0, σ) with σ := mini∈I δi −
maxt∈R≥0

‖∆p(t)‖, and shows convergence of the price
prediction to p∗.

We also provide numerical results of implementing the soft
nudge mechanism in (13). To illustrate global convergence of
the price prediction, we consider the initial condition p̂(0) =[
20 20

]>
and ε = 0.1. Fig. 4 depicts the price prediction

and trust of the agents, and convergence of the aggregative
behavior of the agents to x∗ =

[
10 6

]>
is illustrated in

Fig. 5. Fig. 6 shows that the price prediction converges to an
invariant set in the interior of the open ball B(p0, σ), which
is achieved by selecting small enough ε. As a result, trust of
the agents on the price prediction increases, and p̂ converges
to p∗ after gaining the full trust.

VI. CONCLUSIONS

We have proposed nudge mechanisms which allow a regu-
lator to steer aggregative behavior of price-taking agents to a
desired point. This is achieved without directly designing the
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Fig. 1. The hard nudge mechanism’s price prediction and trust variables
of the agents.
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Fig. 2. Aggregative behavior of the agents resulting from the hard nudge
mechanism.
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Fig. 3. Relation of the hard nudge mechanism’s price prediction and
feasible set.
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Fig. 4. The soft nudge mechanism’s price prediction and trust variables
of the agents.
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Fig. 5. Aggregative behavior of the agents resulting from the soft nudge
mechanism.
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Fig. 6. Relation of the soft nudge mechanism’s price prediction and feasible
set.

price and without complete knowledge about the cost/utility
functions of the agents. We have considered explicit trust
dynamics for the agents to address reliability issues that
may raise due to the potential mismatch between the actual
price and a price prediction signal used by the regulator to
manipulate the agents’ behavior. As shown both analytically
and numerically, the proposed nudge mechanisms gain the
trust of the agents, and subsequently drive the aggregative
behavior to the setpoint.

Future works include considering different trust dynamics,
more general cost functions, and investigating convergence
when the desired behavior is outside the admissible set
(see Remark IV.2). Robustness analysis of the proposed soft
nudge mechanism is another direction for future research.
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